
Succinct Representations (BDDs and SAT)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,
FNAE, FASc,
A K Singh Distinguished Professor in AI,
Dept of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Email: pallab@cse.iitkgp.ac.in
Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS

Set Membership versus Boolean Functions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

• Suppose state variables are x1, x2, x3 and states are encoded as 〈x1 x2 x3〉

• Consider the set of states: S = { 000, 010, 011, 100, 101 }

• Boolean membership function for S: 𝒇𝒇 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑

• Why use Boolean functions to represent state sets?

• Because Boolean functions can be minimized
• Often size of a circuit is logarithmic in the number of minterms

• 𝒇𝒇 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐

Representations of Boolean Functions

• Disjunctive Normal Form (Sum of minterms)
𝒇𝒇 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐

• Checking satisfiability is easy, checking validity is hard

• Conjunctive Normal Form (Product of clauses)
𝒈𝒈 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = (�𝒙𝒙𝟏𝟏+ �𝒙𝒙𝟑𝟑)(�𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐)(𝒙𝒙𝟏𝟏 + �𝒙𝒙𝟐𝟐)

• Checking validity is easy, checking satisfiability is har

• Translation between CNF and DNF is computationally hard

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Converting a Circuit to SAT

p=q can be written as (𝒑𝒑 + �𝒒𝒒)(�𝒑𝒑 + 𝒒𝒒)

CLAUSE FORM:
The circuit functionality is: 𝒙𝒙 = �𝒂𝒂 𝒚𝒚 = �𝒃𝒃 𝒛𝒛 = 𝒙𝒙𝒙𝒙𝒙𝒙
which may be rewritten as:

(𝒙𝒙 + 𝒂𝒂)(�𝒙𝒙+ �𝒂𝒂)(𝒚𝒚 + 𝒃𝒃)(�𝒚𝒚 + �𝒃𝒃)(𝒛𝒛 + �𝒙𝒙 + �𝒚𝒚 + �𝒄𝒄)(�𝒛𝒛 + 𝒙𝒙)(�𝒛𝒛 + 𝒚𝒚)(�𝒛𝒛 + 𝒄𝒄)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

C

Z
A

B

X

Y A circuit describes the relationship (constraints) between its nets

Typically the number of clauses for a circuit is much smaller than 2n (the number of rows in the truth table).

Binary Decision Diagrams (BDDs)

Graphical representation [Lee, Akers, Bryant]

• Efficient representation & manipulation of Boolean functions in many practical cases
• Enables efficient verification/analysis of a large class of designs
• Worst-case behavior still exponential

Example: f = (x1 ∧ x2) ∨ ¬x3

• Represent as binary tree
• Evaluating f:

• Start from root
• For each vertex labeled xi

• take dotted branch if xi = 0
• else take solid branch

5

x3

x1

x2

x3x3

1 0 1 11 0 1 0

x3

x2

Binary Decision Diagrams (BDDs)

Underlying principle: Shannon decomposition

• f(x1, x2, x3) = x1 ∧ f(1, x2, x3) ∨ ¬x1 ∧ f(0, x2, x3)
= x1 ∧ (x2 ∨ ¬x3) ∨ ¬x1 ∧ (¬x3)

• Can be applied recursively to f(1, x2, x3) and f(0, x2, x3)
• Gives tree

• Extend to n arguments

Number of nodes can be exponential
in number of variables

6

f = (x1 ∧ x2) ∨ ¬x3

x3

x1

x2

x3x3

1 0 1 11 0 1 0

x3

x2

Restrictions on BDDs

Ordering of variables

• In all paths from root to leaf, variable labels of nodes must appear in a
specified order

Reduced graphs

• No two distinct vertices must
represent the same function

• Each non-leaf vertex must have
distinct children

REDUCED ORDERED BDD (ROBDD): Directed Acyclic Graph

7

x1

x2

x3x2

1 0 1 11 0 1 0

x2

x3

x3

Not a ROBDD ! f = (x1 ∧ x2) ∨ ¬x3

ROBDDs

• Unique (canonical) representation of f for given ordering
of variables

• Checking f1 = f2 reduces to checking if ROBDDs
are isomorphic

• Shared subgraphs: size reduction
• Every path doesn’t have all labels x1, x2, x3
• Every non-leaf vertex has a path to 0 and 1

8

10

x1
x2

x3

x3

x1

x2

x3x3

1 0 1 11 0 1 0

x3

x2

Variable Ordering Problem

9

x1

0 1 10

x3

x5

x2

x4

x6

f = x1x2 + x3x4 + x5x6

Order: x1 < x3 < x5 < x2 < x4 < x6 Order: x1 < x2 < x3 < x4 < x5 < x6

x3

x5 x5 x5

x2 x2 x2

x4

x1

x2

x3

x4

x5

x6

Variable Ordering Problem

ROBDD size

• Extremely sensitive to variable ordering
• f = x1x2 + x3x4 + … + x2n-1x2n

• 2n+2 vertices for order x1 < x2 < x3 < x4 < … x2n-1 < x2n
• 2n+1 vertices for order x1 < xn+1 < x2 < xn+2 < … xn < x2n

• f = x1 x2 x3 …. xn
• n+2 vertices for all orderings

• Exponential regardless of variable ordering
• Most significant bit of product of n-bit integer multiplier [Bryant]

Determining best variable order for arbitrary functions is computationally intractable

• Heuristics: Static ordering, Dynamic ordering

10

Variable Ordering Solutions

Dynamic ordering

• Starts with user-provided static order
• If dynamic re-ordering triggered on-the-fly, evaluate benefits of re-ordering small subset of variables

• If beneficial, re-order and repeat until no benefit
• Expensive in general, sophisticated triggers essential
• Key observation [Friedman]: Given ROBDD with x1 < … xi < xi+1 < … xn,

• Permuting x1 … xi has no effect on ROBDD nodes labeled by xi+1 … xn
• Permuting xi+1 … xn has no effect on ROBDD nodes labeled by x1 … xi
• Variables in adjacent levels easily swappable

11

a
b b

ccc c

f
f0 f1 bb b

ccc c

ff0 f1

a a

f00 f01 f10 f11 f00 f01 f10 f11

Re-order a & b

12

How to use a BDD package

𝒇𝒇 𝒙𝒙,𝒂𝒂,𝒃𝒃, 𝒄𝒄, 𝒛𝒛 = (𝒙𝒙 + 𝒂𝒂)(�𝒙𝒙 + �𝒂𝒂)(𝒚𝒚 + 𝒃𝒃)(�𝒚𝒚 + �𝒃𝒃)(𝒛𝒛 + �𝒙𝒙 + �𝒚𝒚 + �𝒄𝒄)(�𝒛𝒛 + 𝒙𝒙)(�𝒛𝒛 + 𝒚𝒚)(�𝒛𝒛 + 𝒄𝒄)

• Create a BDD manager
• Create BDDs of sub-functions and then the functions

bdd1 = Cudd_bddOr(gbm, x, a);
bdd2 = Cudd_bddOr(gbm, y, b);
bdd3 = Cudd_bddAnd(gbm, bdd1, bdd2);
… and so on.

• More to be discussed during hands-on sessions

13

• All logical operations – AND, OR, NOT, etc.

• Validity Checking: The BDD of a valid function
reduces to the single node 1

• Satisfiability Checking: The BDD of an unsatisfiable
function reduces to the single node 0

• Variable Quantification: k F
xi –1

xi +1

xn

x1

F [xi =k]

BDD Operations

• Restrict operation: Effect of setting function
argument xi to constant k (0 or 1).

• Also called Cofactor operation

xi –1

xi +1

xn

x1

F ∃ ∃ xi F

1 F

0 F

xi –1

xi +1

xn

x1

xi –1

xi +1

xn

x1

14

Basics of Finite State Systems

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

r1

r2

g1

g2

PS
g1g2

I/P
r1r2

NS
g′1g′2

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

00
01
10
10
00
01
10
10
00
00
10
10
00
00
10
10

Initial State: r1=0, r2=0, g1=0, g2=1

00 01

10 11

00

10,
11

01

00

01

10,11

00,
01

10,11 10,11

00,01

15

Open Systems versus Non-Deterministic Closed Systems

r1

r2

g1

g2

PS
g1g2

I/P
r1r2

NS
g′1g′2

Next
I/P

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

00
01
10
10
00
01
10
10
00
00
10
10
00
00
10
10

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

00 01

10 11

00

10,
11

01

00

01

10,11

00,
01

10,11 10,11

00,01

00 10

01
0001

1011

1010

1001

1000

The next input is non-deterministic

Present state Next state

Present input

The input is part of the state. Since the next input is
not known we have a non-deterministic state machine.

16

The complete transition relation

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

StartTransition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

Initial State:
r1=0, r2=0, g1=0, g2=1

PS
g1g2

I/P
r1r2

NS
g′1g′2

Next
I/P

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

00
01
10
10
00
01
10
10
00
00
10
10
00
00
10
10

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

17

State Labels: Propositions

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

Start

PS
g1g2

I/P
r1r2

NS
g′1g′2

Next
I/P

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

00
01
10
10
00
01
10
10
00
00
10
10
00
00
10
10

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

p: g1 ∧ g2
The states in the yellow
box are labeled with p

q: r1 = g1
The states labeled with q are 0000, 0001,
0100, 0101, 1010, 1011, 1110, 1111

Succinct representation of State Machines

• Sequential functions: Combinational logic + Flip flops

• The combinational logic represents the
transition relation

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 18

Combinational
Logic

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

r1

r2

g1

g2

The notion of Characteristic Functions

𝒇𝒇 𝒛𝒛 = 𝒙𝒙𝒙𝒙𝒙𝒙

The characteristic function 𝒄𝒄𝒄𝒄(𝒛𝒛,𝒙𝒙,𝒚𝒚, 𝒄𝒄) ≡ 𝒛𝒛 = 𝒙𝒙𝒙𝒙𝒙𝒙
Therefore:

𝒄𝒄𝒄𝒄 𝒛𝒛,𝒙𝒙,𝒚𝒚, 𝒄𝒄 = (𝒛𝒛 + �𝒙𝒙 + �𝒚𝒚 + �𝒄𝒄)(�𝒛𝒛 + 𝒙𝒙)(�𝒛𝒛 + 𝒚𝒚)(�𝒛𝒛 + 𝒄𝒄)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 19

C

Z
A

B

X

Y

x y c z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

x y c z CF
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

20

Characteristic functions for transition relations

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

r1

r2

g1

g2

𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏,𝒈𝒈𝟏𝟏′ = (�𝒓𝒓𝟏𝟏 + 𝒈𝒈𝟏𝟏′)(𝒓𝒓𝟏𝟏 + �𝒈𝒈𝟏𝟏′)

𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐,𝒈𝒈𝟏𝟏,𝒈𝒈𝟐𝟐′ = (𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟏𝟏 + �𝒓𝒓𝟐𝟐 + 𝒈𝒈𝟏𝟏)(�𝒈𝒈𝟐𝟐′ + �𝒓𝒓𝟏𝟏) (�𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟐𝟐)(�𝒈𝒈𝟐𝟐′ + �𝒈𝒈𝟏𝟏)

𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐,𝒈𝒈𝟏𝟏,𝒈𝒈𝟐𝟐 ,𝒈𝒈𝟏𝟏′ ,𝒈𝒈𝟐𝟐′ = 𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏,𝒈𝒈𝟏𝟏′ ∧ 𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏,𝒓𝒓𝟐𝟐,𝒈𝒈𝟏𝟏
= (�𝒓𝒓𝟏𝟏 + 𝒈𝒈𝟏𝟏′)(𝒓𝒓𝟏𝟏 + �𝒈𝒈𝟏𝟏′)(𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟏𝟏 + �𝒓𝒓𝟐𝟐 + 𝒈𝒈𝟏𝟏)(�𝒈𝒈𝟐𝟐′ + �𝒓𝒓𝟏𝟏) (�𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟐𝟐)(�𝒈𝒈𝟐𝟐′ + �𝒈𝒈𝟏𝟏)

Using BDDs

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 21

r1

r2

g1

g2

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

What can we do using CF of transition relation?

EXERCISE: Use the characteristic function for the transition relation to answer the following:

• Is there a transition from a state at which both requests, r1 and r2, are high to a state at which g2 is high?
• Can g1 ever be high for two consecutive cycles?
• Can g1 ever be high for three consecutive cycles?
• If g2 is high, does in mean r2 was high in one of the previous two cycles?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 22

State Explosion and Succinct Representations
• The number of states in a circuit is a product of the number of states in its components (exponential growth)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 23

• The size of BDDs grow exponentially with the number of variables.
• There are model checking techniques which use partitioned transition relations

• The complexity of solving a SAT instance grows exponentially with the number of clauses.
• But modern SAT solvers are good at solving millions of clauses in less than a second

• Techniques to overcome the state explosion problem
• Abstractions, Assume-Guarantee, Induction

	Succinct Representations (BDDs and SAT)
	Set Membership versus Boolean Functions
	Representations of Boolean Functions
	Converting a Circuit to SAT
	Binary Decision Diagrams (BDDs)
	Binary Decision Diagrams (BDDs)
	Restrictions on BDDs
	ROBDDs
	Variable Ordering Problem
	Variable Ordering Problem
	Variable Ordering Solutions
	How to use a BDD package
	BDD Operations
	Basics of Finite State Systems
	Open Systems versus Non-Deterministic Closed Systems
	The complete transition relation
	State Labels: Propositions
	Succinct representation of State Machines
	The notion of Characteristic Functions
	Characteristic functions for transition relations
	Using BDDs
	What can we do using CF of transition relation?
	State Explosion and Succinct Representations

