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Set Membership versus Boolean Functions
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• Suppose state variables are x1, x2, x3 and states are encoded as 〈x1 x2 x3〉

• Consider the set of states: S = { 000, 010, 011, 100, 101 }

• Boolean membership function for S:  𝒇𝒇 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑

• Why use Boolean functions to represent state sets?

• Because Boolean functions can be minimized
• Often size of a circuit is logarithmic in the number of minterms

• 𝒇𝒇 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐�𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐



Representations of Boolean Functions

• Disjunctive Normal Form (Sum of minterms)
𝒇𝒇 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = �𝒙𝒙𝟏𝟏�𝒙𝒙𝟑𝟑 + �𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐 + 𝒙𝒙𝟏𝟏�𝒙𝒙𝟐𝟐

• Checking satisfiability is easy, checking validity is hard

• Conjunctive Normal Form (Product of clauses)
𝒈𝒈 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = (�𝒙𝒙𝟏𝟏+ �𝒙𝒙𝟑𝟑)(�𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐)(𝒙𝒙𝟏𝟏 + �𝒙𝒙𝟐𝟐)

• Checking validity is easy, checking satisfiability is har

• Translation between CNF and DNF is computationally hard
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Converting a Circuit to SAT

p=q can be written as (𝒑𝒑 + �𝒒𝒒)(�𝒑𝒑 + 𝒒𝒒)

CLAUSE FORM: 
The circuit functionality is: 𝒙𝒙 = �𝒂𝒂 𝒚𝒚 = �𝒃𝒃 𝒛𝒛 = 𝒙𝒙𝒙𝒙𝒙𝒙
which may be rewritten as:

(𝒙𝒙 + 𝒂𝒂)(�𝒙𝒙+ �𝒂𝒂)(𝒚𝒚 + 𝒃𝒃)(�𝒚𝒚 + �𝒃𝒃)(𝒛𝒛 + �𝒙𝒙 + �𝒚𝒚 + �𝒄𝒄)(�𝒛𝒛 + 𝒙𝒙)(�𝒛𝒛 + 𝒚𝒚)(�𝒛𝒛 + 𝒄𝒄)
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Y A circuit describes the relationship (constraints) between its nets

Typically the number of clauses for a circuit is much smaller than 2n (the number of rows in the truth table).



Binary Decision Diagrams (BDDs)

Graphical representation [Lee, Akers, Bryant] 

• Efficient representation & manipulation of Boolean functions in many practical cases
• Enables efficient verification/analysis of a large class of designs
• Worst-case behavior still exponential

Example:  f = (x1 ∧ x2) ∨ ¬x3

• Represent as binary tree
• Evaluating f:

• Start from root
• For each vertex labeled xi

• take dotted branch if xi = 0
• else take solid branch
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Binary Decision Diagrams (BDDs)

Underlying principle:  Shannon decomposition

• f(x1, x2, x3)  =  x1 ∧ f(1, x2, x3) ∨ ¬x1 ∧ f(0, x2, x3)
=  x1 ∧ (x2 ∨ ¬x3)   ∨ ¬x1 ∧ (¬x3)

• Can be applied recursively to f(1, x2, x3) and f(0, x2, x3)
• Gives tree

• Extend to n arguments

Number of nodes can be exponential 
in number of variables
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Restrictions on BDDs

Ordering of variables

• In all paths from root to leaf, variable labels of nodes must appear in a 
specified order

Reduced graphs

• No two distinct vertices must 
represent the same function

• Each non-leaf vertex must have 
distinct children

REDUCED ORDERED BDD (ROBDD): Directed Acyclic Graph
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Not a ROBDD ! f = (x1 ∧ x2) ∨ ¬x3



ROBDDs

• Unique (canonical) representation of f  for given ordering 
of variables

• Checking f1 = f2 reduces to checking if ROBDDs 
are isomorphic

• Shared subgraphs: size reduction
• Every path doesn’t have all labels x1, x2, x3
• Every non-leaf vertex has a path to 0 and 1
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Variable Ordering Problem
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f =  x1x2 +  x3x4 +  x5x6
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Variable Ordering Problem

ROBDD size 

• Extremely sensitive to variable ordering
• f = x1x2 + x3x4 + … + x2n-1x2n

• 2n+2 vertices for order x1 < x2 < x3 < x4 < … x2n-1 <  x2n
• 2n+1 vertices for order x1 < xn+1 < x2 < xn+2 < … xn < x2n

• f = x1 x2 x3 …. xn
• n+2 vertices for all orderings 

• Exponential regardless of variable ordering
• Most significant bit of product of n-bit integer multiplier [Bryant]

Determining best variable order for arbitrary functions is computationally intractable

• Heuristics:  Static ordering, Dynamic ordering
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Variable Ordering Solutions

Dynamic ordering

• Starts with user-provided static order
• If dynamic re-ordering triggered on-the-fly, evaluate benefits of re-ordering small subset of variables

• If beneficial, re-order and repeat until no benefit
• Expensive in general, sophisticated triggers essential
• Key observation [Friedman]: Given ROBDD with x1 < … xi < xi+1 < … xn,  

• Permuting x1 … xi has no effect on ROBDD nodes labeled by xi+1 … xn
• Permuting xi+1 … xn has no effect on ROBDD nodes labeled by x1 … xi
• Variables in adjacent levels easily swappable
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How to use a BDD package

𝒇𝒇 𝒙𝒙,𝒂𝒂,𝒃𝒃, 𝒄𝒄, 𝒛𝒛 = (𝒙𝒙 + 𝒂𝒂)(�𝒙𝒙 + �𝒂𝒂)(𝒚𝒚 + 𝒃𝒃)(�𝒚𝒚 + �𝒃𝒃)(𝒛𝒛 + �𝒙𝒙 + �𝒚𝒚 + �𝒄𝒄)(�𝒛𝒛 + 𝒙𝒙)(�𝒛𝒛 + 𝒚𝒚)(�𝒛𝒛 + 𝒄𝒄)

• Create a BDD manager
• Create BDDs of sub-functions and then the functions

bdd1 = Cudd_bddOr(gbm, x, a);
bdd2 = Cudd_bddOr(gbm, y, b);
bdd3 = Cudd_bddAnd(gbm, bdd1, bdd2); 
… and so on.

• More to be discussed during hands-on sessions
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• All logical operations – AND, OR, NOT, etc.

• Validity Checking: The BDD of a valid function 
reduces to the single node 1

• Satisfiability Checking: The BDD of an unsatisfiable
function reduces to the single node 0

• Variable Quantification: k F 
xi –1

xi +1

xn 

x1

F [xi =k]

BDD Operations

• Restrict operation: Effect of setting function 
argument xi to constant k  (0 or 1).

• Also called Cofactor operation

xi –1

xi +1

xn 

x1

F ∃ ∃ xi F 

1 F 

0 F 

xi –1

xi +1

xn 

x1

xi –1

xi +1

xn 

x1
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Basics of Finite State Systems

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

r1

r2

g1

g2
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g1g2

I/P
r1r2

NS
g′1g′2

00
00
00
00
01
01
01
01
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10
10
10
11
11
11
11

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

00
01
10
10
00
01
10
10
00
00
10
10
00
00
10
10

Initial State:  r1=0, r2=0, g1=0, g2=1
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Open Systems versus Non-Deterministic Closed Systems
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r2

g1

g2

PS
g1g2
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r1r2

NS
g′1g′2

Next 
I/P

00
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11

00
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xx
xx
xx
xx
xx

00 01

10 11
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10,
11

01

00

01

10,11

00,
01

10,11 10,11

00,01

00 10

01
0001

1011

1010

1001

1000

The next input is non-deterministic

Present state Next state

Present input

The input is part of the state. Since the next input is 
not known we have a non-deterministic state machine.



16

The complete transition relation

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

StartTransition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

Initial State:  
r1=0, r2=0, g1=0, g2=1

PS
g1g2

I/P
r1r2

NS
g′1g′2

Next 
I/P

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

00
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10
11
00
01
10
11
00
01
10
11
00
01
10
11

00
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10
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00
01
10
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00
00
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10
00
00
10
10

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
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State Labels: Propositions

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111
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PS
g1g2
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r1r2
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g′1g′2

Next 
I/P
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00
00
00
01
01
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01
10
10
10
10
11
11
11
11

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
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10
00
01
10
10
00
00
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10
00
00
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10
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xx
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xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

p:  g1 ∧ g2
The states in the yellow 
box are labeled with p

q: r1 = g1
The states labeled with q are 0000, 0001, 
0100, 0101, 1010, 1011, 1110, 1111 



Succinct representation of State Machines

• Sequential functions: Combinational logic + Flip flops

• The combinational logic represents the 
transition relation
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Combinational 
Logic

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

r1

r2

g1

g2



The notion of Characteristic Functions

𝒇𝒇 𝒛𝒛 = 𝒙𝒙𝒙𝒙𝒙𝒙

The characteristic function 𝒄𝒄𝒄𝒄(𝒛𝒛,𝒙𝒙,𝒚𝒚, 𝒄𝒄) ≡ 𝒛𝒛 = 𝒙𝒙𝒙𝒙𝒙𝒙
Therefore:

𝒄𝒄𝒄𝒄 𝒛𝒛,𝒙𝒙,𝒚𝒚, 𝒄𝒄 = (𝒛𝒛 + �𝒙𝒙 + �𝒚𝒚 + �𝒄𝒄)(�𝒛𝒛 + 𝒙𝒙)(�𝒛𝒛 + 𝒚𝒚)(�𝒛𝒛 + 𝒄𝒄)
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C

Z
A

B

X

Y

x y c z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

x y c z CF
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1
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Characteristic functions for transition relations

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

r1

r2

g1

g2

𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏,𝒈𝒈𝟏𝟏′ = (�𝒓𝒓𝟏𝟏 + 𝒈𝒈𝟏𝟏′ )(𝒓𝒓𝟏𝟏 + �𝒈𝒈𝟏𝟏′ )

𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐,𝒈𝒈𝟏𝟏,𝒈𝒈𝟐𝟐′ = (𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟏𝟏 + �𝒓𝒓𝟐𝟐 + 𝒈𝒈𝟏𝟏)(�𝒈𝒈𝟐𝟐′ + �𝒓𝒓𝟏𝟏) (�𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟐𝟐)(�𝒈𝒈𝟐𝟐′ + �𝒈𝒈𝟏𝟏)

𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐,𝒈𝒈𝟏𝟏,𝒈𝒈𝟐𝟐 ,𝒈𝒈𝟏𝟏′ ,𝒈𝒈𝟐𝟐′ = 𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏,𝒈𝒈𝟏𝟏′ ∧ 𝒄𝒄𝒄𝒄𝒄𝒄 𝒓𝒓𝟏𝟏,𝒓𝒓𝟐𝟐,𝒈𝒈𝟏𝟏
= (�𝒓𝒓𝟏𝟏 + 𝒈𝒈𝟏𝟏′ )(𝒓𝒓𝟏𝟏 + �𝒈𝒈𝟏𝟏′ )(𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟏𝟏 + �𝒓𝒓𝟐𝟐 + 𝒈𝒈𝟏𝟏)(�𝒈𝒈𝟐𝟐′ + �𝒓𝒓𝟏𝟏) (�𝒈𝒈𝟐𝟐′ + 𝒓𝒓𝟐𝟐)(�𝒈𝒈𝟐𝟐′ + �𝒈𝒈𝟏𝟏)



Using BDDs
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r1

r2

g1

g2

Transition Relation:
g′1 ⇔ r1
g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1



What can we do using CF of transition relation?

EXERCISE: Use the characteristic function for the transition relation to answer the following: 

• Is there a transition from a state at which both requests, r1 and r2, are high to a state at which g2 is high?
• Can g1 ever be high for two consecutive cycles?
• Can g1 ever be high for three consecutive cycles?
• If g2 is high, does in mean r2 was high in one of the previous two cycles?
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State Explosion and Succinct Representations
• The number of states in a circuit is a product of the number of states in its components (exponential growth)
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• The size of BDDs grow exponentially with the number of variables.
• There are model checking techniques which use partitioned transition relations

• The complexity of solving a SAT instance grows exponentially with the number of clauses.
• But modern SAT solvers are good at solving millions of clauses in less than a second

• Techniques to overcome the state explosion problem
• Abstractions, Assume-Guarantee, Induction   
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